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Abstract. We construct homotopy formulae f = ∂Hqf + Hq+1∂f for (0, q) forms on the product
domain Ω1 × · · · ×Ωm, where each Ωj is either a bounded Lipschitz domain in C1, a bounded strongly
pseudoconvex domain with C2 boundary, or a smooth convex domain of finite type. Such homo-
topy operators Hq yield solutions to the ∂ equation with optimal Sobolev regularity W k,p → W k,p

simultaneously for all k ∈ Z and 1 < p < ∞.

1. Introduction

The goal of this paper is to prove the following:

Theorem 1. Let Ωj ⊂ Cnj be a bounded Lipschitz domain for each j = 1, . . . ,m, with m ≥ 1, such
that one of the following holds.

• Ωj ⊂ C is a planar domain (i.e. nj = 1).
• Ωj is strongly pseudoconvex with C2 boundary or strongly C-linearly convex with C1,1 boundary.
• Ωj is a smooth convex domain of finite type.

Let Ω := Ω1×· · ·×Ωm and n :=
∑m

j=1 nj. Then there exist linear operators P = PΩ : S ′(Ω) → S ′(Ω)

and Hq = HΩ
q : S ′(Ω;∧0,q) → S ′(Ω;∧0,q−1) for 1 ≤ q ≤ n, such that

(i) f = Pf +H1∂f for all f ∈ S ′(Ω); and f = ∂Hqf +Hq+1∂f for all f ∈ S ′(Ω;∧0,q).

(ii) We have Sobolev estimates P : W k,p(Ω) → W k,p(Ω) and Hq : W
k,p(Ω;∧0,q) → W k,p(Ω;∧0,q−1)

for all k ∈ Z and 1 < p < ∞.

Here S ′(Ω) is the space of distributions on Ω which admit extension to distributions on Cn, W k,p(Ω)
is the Sobolev space on Ω with k ∈ Z and 1 < p < ∞, and S ′(Ω;∧0,q) (resp. W k,p(Ω;∧0,q)) is the
space of degree (0, q) forms with coefficients in S ′(Ω) (resp. W k,p(Ω)). See Notation 4, Definition 5
and Convention 13 for the precise definitions. We note that (Hq)

n
q=1 do not possess optimal Hölder

estimates. See Remark 28.
As an immediate consequence of Theorem 1 we obtain a solution operator to the ∂ equation on

product domains for any (0, q) forms with q ≥ 1, together with the associated Sobolev estimate. Note
that in view of a Kerzman-type example (see, e.g. [Zha24, Example 1]) the Sobolev regularity is sharp.

Corollary 2. Let Ω ⊂ Cn be given as in Theorem 1. Let 1 ≤ q ≤ n. For every (0, q)-form f on Ω
whose coefficients are extendable distributions such that ∂f = 0 in the sense of distributions, there is
a (0, q − 1) form u on Ω whose coefficients are also extendable distributions, such that ∂u = f .

Moreover, for every k ∈ Z and 1 < p < ∞ there is a constant C > 0, such that if the coefficients of
f are in W k,p, then we can choose u whose coefficients are in W k,p, with the estimate

∥u∥Wk,p(Ω;∧0,q−1) ≤ C∥f∥Wk,p(Ω;∧0,q).

The ∂ homotopy formulae play an essential role in studying the ∂ problem and have been extensively
developed of pseudoconvex domains with certain finite type conditions, using the ∂-Neumann approach
(e.g. [GS77, FK88, Cha89, CNS92]) and the integral representation approach (e.g. [LR80, Ran90,
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DFF99, Gon19]). We refer the readers to [Ran90, CS01, LM02] for more details. Product domains,
owing to their particular structure, fail to have finite type, and merely admit Lipschitz boundary
regularity.

The study of the ∂ problem on product domains was initiated by the work of Henkin [Hen71],
who established L∞ estimates for the ∂ equation on the bidisk with continuous coefficients using
an integral representation by the Cauchy kernel. Landucci [Lan75] later proved an analogous result
for the canonical solutions. Since the work of Chen-McNeal [CM20b] on weighted Lp estimates for
product domains in C2, there has been much progress towards the optimal Lp estimates for (0, 1)
forms on Cartesian products of general planar domains. The important case p = ∞ for (0, 1) forms
(on planar domains) without weights is also called the Kerzman’s supnorm estimate problem, posted
by Kerzman [Ker71] in 1971. The optimal L∞ estimate was first given by Fassina-Pan [FP24] for
forms with Cn−1,α coefficients. Later Dong-Pan-Zhang [DPZ20] extended this result to the canonical
solutions for continuous data. Finally, Kerzman’s problem was completely solved recently by Yuan
[Yua22] on products of C2 planar domains based on [DPZ20], and Li [Li24] on products of C1,α planar
domains independently. Subsequently Li-Long-Luo [LLL24] further relaxed the boundary regularity of
each Ωj to be Lipschitz. The Sobolev regularity of ∂ was first investigated by Chakrabarti-Shaw [CS11]
for the canonical solutions with respect to (0, 1) forms on products of certain smooth pseudoconvex
domains. In particular, the optimal W k,p, k ≥ 1 regularity was obtained for products of smooth planar
domains in C2 by Jin-Yuan [JY20] and in Cn by Zhang [Zha24]. See also [Jak86, DLT23, CM20a, PZ25]
and the references therein.

In comparison to those results, our theorem allows each factor Ωj ⊂ Cnj to be non-planar (i.e. we
allow nj > 1). Such product domains were previously studied in [Jak86, CS11, CM20a] for (0, 1) forms
in certain special Sobolev spaces that are strictly smaller than the standard ones and involve a loss of
derivatives. In the special case of planar product domains, we obtain Sobolev estimates assuming that
each factor Ωj to be merely Lipschitz, which extends the Lp → Lp estimate from [LLL24]. Meanwhile,

we show the existence of ∂-solutions on space of distributions, a result that is novel even for polydisks.
Previously the similar solvability on distributions (with large orders) were only known for strongly
pseudoconvex domains by Shi-Yao [SY24b] and Yao [Yao24b] and for convex domains of finite type
by Yao [Yao24a]. Moreover, we derive the optimal estimates for general (0, q) forms with all q ≥ 1.
To the authors’ best knowledge, for the case q ≥ 2, the only previously established result for optimal
∂ estimate on product domains is the L2 → L2 estimate, which follows directly from Hörmander’s
classical L2-theory. In particular, the Lp-boundedness for p ̸= 2 remains open for the canonical
solutions on (0, q) forms even on polydisk.

Our construction of the homotopy operators is inspired from Nijenhuis-Woolf’s formulae in [NW63,
(2.2.2)] for products of planar domains, see Theorem 18 and Remark 23. For estimates we use the
so-called Fubini decomposition of Sobolev spaces, see Proposition 10.

In fact, the proof yields homotopy formulae and the corresponding operator estimates on a consider-
ably larger class of product domains, provided that each factor domain admits its homotopy formulae
and regularity estimates. To be precise, the following is the conditional result:

Theorem 3. Let Ωj ⊂ Cnj be a bounded Lipschitz domain for each j = 1, . . . ,m, with m ≥ 1. Suppose

there exist linear homotopy operators H
Ωj
q : C∞(Ωj ;∧0,q) → D ′(Ωj ;∧0,q−1) for 1 ≤ q ≤ nj, such that

the following homotopy formulae hold (we set H
Ωj

nj+1 = 0):

(1) f = ∂H
Ωj
q f +H

Ωj

q+1∂f for all f ∈ C∞(Ωj ;∧0,q), 1 ≤ q ≤ nj .

Let Ω := Ω1 × · · · × Ωm and n :=
∑m

j=1 nj. Then

(i) there exist linear operators Hq = HΩ
q : C∞(Ω;∧0,q) → D ′(Ω;∧0,q−1) for 1 ≤ q ≤ n, such that

(2) f = ∂Hqf +Hq+1∂f for all f ∈ C∞(Ω;∧0,q).
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Further, set the skew Bergman projections PΩj : C∞(Ωj) → D ′(Ωj) for 1 ≤ j ≤ m by PΩjf :=

f −H
Ωj

1 ∂f for f ∈ C∞(Ωj), and P = PΩ : C∞(Ω) → D ′(Ω) by Pf := f −HΩ
1 ∂f for f ∈ C∞(Ω).

(ii) Suppose there exists some k ∈ Z and 1 < p < ∞, such that for 1 ≤ j ≤ m and 1 ≤ q ≤ nj,

PΩj and H
Ωj
q are both defined and bounded

(3) PΩj : W l,p(Ωj) → W l,p(Ωj); H
Ωj
q : W l,p(Ωj ;∧0,q) → W l,p(Ωj ;∧0,q−1) for l = 0, k.

Then P and Hq (1 ≤ q ≤ n) obtained in (i) admit Sobolev estimates P : W k,p(Ω) → W k,p(Ω)

and Hq : W
k,p(Ω;∧0,q) → W k,p(Ω;∧0,q−1) as well.

For the precise formulation of HΩ using (HΩj )mj=1, see Remarks 20 and 23.

2. Sobolev Spaces and Fubini Property

In this section, we give the precise definition for the function space W k,p, and discuss a Fubini
property for Sobolev norms on product domains.

Notation 4. Let S ′(RN ) be the space of tempered distributions. For a bounded open subset U ⊂ RN ,

we denote by D ′(U) the space of distributions in U , by S ′(U) = {f̃ |U : f̃ ∈ S ′(RN )} the space of
extendable distributions in U , and by E ′(U) the space of distributions with compact supports in U .

See [Ryc99, (3.1) and Proposition 3.1] for an equivalent description of S ′(U). See also [Yao24b,
Lemma A.13 (ii)].

Definition 5. Let U ⊆ RN be an open subset, k ∈ Z≥0, and 1 ≤ p ≤ ∞. W k,p(U) is the standard
Sobolev space with norm

∥f∥Wk,p(U) =
( ∑

|α|≤k

∥Dαf∥pLp(U)

)1/p
.

We denote by W−k,p(U) := {
∑

|α|≤k D
αgα : gα ∈ Lp(U)}, a subset of distributions, with norm

(4) ∥f∥W−k,p(U) = inf
{( ∑

|α|≤k

∥gα∥pLp(U)

)1/p
: f =

∑
|α|≤k

Dαgα as distributions
}
.

Here when p = ∞ we take the usual modification by replacing the ℓp sum by the supremum.

For l ∈ Z, we use W l,p
c (U) ⊂ W l,p(U) to be the subspace of all functions in W l,p(U) that have

compact supports in U .

Remark 6. (i) For k ≥ 0 and 1 ≤ p < ∞, let W k,p
0 (U) ⊆ W k,p(U) be the closure of C∞

c (U)

in ∥ · ∥Wk,p(U). Then we have correspondence W−k,p(U) = W k,p′

0 (U)′ with equivalent norms,

where U ⊂ RN is an arbitrary domain and p′ = p/(p− 1). See e.g. [AF03, Theorem 3.12]. It

is also worth noticing that W−k,p(RN ) = W k,p′(RN )′ via e.g. [AF03, Corollary 3.23].
(ii) When U is a bounded Lipschitz domain we have S ′(U) =

⋃∞
k=1W

−k,p(U), see e.g. [Yao24b,

Lemma A.13 (ii)]. In other words if we have an operator T defined on W−k,p(U) for all k ≥ 1,
then T is defined on S ′(U).

In order to incorporate the proof of Propositions 24, 26 and 31 we include the discussion of the
fractional Sobolev spaces as well.

Definition 7 (Sobolev-Bessel). Let s ∈ R and 1 < p < ∞. We define the Bessel potential space
Hs,p(RN ) to be the set of all tempered distributions f ∈ S ′(RN ) such that

∥f∥Hs,p(RN ) := ∥(I −∆)
s
2 f∥Lp(RN ) < ∞.

On an open subset U ⊆ RN , define Hs,p(U) := {f̃ |U : f̃ ∈ Hs,p(RN )}, with norm

∥f∥Hs,p(U) := inf
{
∥f̃∥Hs,p(RN ) : f̃ ∈ Hs,p(RN ), f̃ |U = f

}
.

We also define H̃s,p(U) := {f ∈ Hs,p(RN ) : f |Uc = 0} as a closed subspace of Hs,p(RN ).
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Here we use the standard (negative) Laplacian ∆ =
∑N

j=1D
2
xj
. The fractional Laplacian (Bessel

potential) can be defined via Fourier transform ((I−∆)s/2f)∧(ξ) = (1+4π2|ξ|2)s/2f̂(ξ), where f̂(ξ) =∫
RN f(x)e−2πix·ξdξ.

Remark 8. Let U ⊆ RN be a bounded Lipschitz domain and 1 < p < ∞.

(i) Hk,p(U) = W k,p(U) for all k ∈ Z with equivalent norms. See e.g. [Yao24b, Lemma A.11] for
a proof.

(ii) The complex interpolation [Hs0,p(U), Hs1,p(U)]θ = H(1−θ)s0+θs1,p(U) holds for all s0, s1 ∈ R
and 0 < θ < 1. See e.g. [Tri06, (1.372)], where in the reference Hs,p(U) = F s

p2(U) are special
case of Triebel-Lizorkin spaces. As a result our homotopy operators in Theorem 1 are in fact
bounded Hs,p(U) → Hs,p(U) for all s ∈ R and 1 < p < ∞.

Lemma 9. Let U ⊂ RN be a bounded Lipschitz domain. There is an extension operator E : S ′(U) →
E ′(RN ) such that E : W k,p(U) → W k,p

c (RN ) is bounded for all k ∈ Z and 1 < p < ∞. In particular

for each k and 1 < p < ∞ we have W k,p(U) = {f̃ |U : f̃ ∈ W k,p(RN )}.

Proof. An existence of such extension operator E is established by Rychkov [Ryc99, Theorem 4.1]. In
the reference we use the fact that W k,p(U) = F k

p2(U) are Triebel-Lizorkin spaces (see e.g. [Yao24b,

Lemma A.11 (ii)]). □

Let us recall the Fubini property for Sobolev norms on product domains. This will enable a more
convenient derivation of the Sobolev estimates for the homotopy operators. Throughout the rest of
the paper, we say two quantities a and b to satisfy a ≲ b if there exists some constant C such that
a ≤ Cb. We say a ≈ b if a ≲ b and b ≲ a at the same time.

Proposition 10 (Fubini Property). Let U ⊂ Rm and V ⊂ Rn be two bounded Lipschitz domains. Let
k ∈ Z+ and 1 < p < ∞. Then

(i) W k,p(U × V ) = Lp(U ;W k,p(V )) ∩Lp(V ;W k,p(U)) in the sense that we have equivalent norms

∥f∥p
Wk,p(U×V )

≈U,V,k,p

∫
V
∥f(·, v)∥p

Wk,p(U)
dv +

∫
U
∥f(u, ·)∥p

Wk,p(V )
du,

provided either side is finite.
(ii) W−k,p(U × V ) = Lp(U ;W−k,p(V )) + Lp(V ;W−k,p(U)) in the sense that we have equivalent

norms

∥f∥p
W−k,p(U×V )

≈U,V,k,p inf
f1+f2=f

∫
U
∥f1(u, ·)∥pW−k,p(V )

du+

∫
V
∥f2(·, v)∥pW−k,p(U)

dv,

provided either side is finite.

Remark 11. Here Lp(U ;X) can be interpreted as the space of strongly measurable functions which
take values in a Banach space X, see e.g. [HvNVW16, Section 1.2.b] for more discussion.

Essentially, Proposition 10 shows that for the Sobolev functions on the product of two domains,
the Lp norm of the mixed derivatives across the two domains can be controlled by the Lp norm of the
pure derivatives in each individual domain.

Proof. When U and V are the total spaces Rm
u and Rn

v , respectively, the decomposition

(5) W k,p(Rm
u × Rn

v ) = Lp(Rm
u ;W k,p(Rn

v )) ∩ Lp(Rn
v ;W

k,p(Rm
u )), k ≥ 1, 1 < p < ∞

is a standard result, see e.g. [Tri10, Chapter 2.5.13]. Recall from Remark 6 (i)W−k,p(Rr) = W k,p′(Rr)′

for 1 < p < ∞, 1
p + 1

p′ = 1 and r ∈ {m,n,m + n}, taking duality (see also [HvNVW16, Proposi-

tion 1.3.3]) we get

(6) W−k,p(Rm
u × Rn

v ) = Lp(Rm
u ;W−k,p(Rn

v )) + Lp(Rn
v ;W

−k,p(Rm
u ))

with equivalent norms.
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(i): Now k ≥ 0. Clearly W k,p(U ×V ) ⊂ Lp(U ;W k,p(V )) and W k,p(U ×V ) ⊂ Lp(V ;W k,p(U)), both of
which are continuous embeddings. This gives W k,p(U × V ) ⊆ Lp(U ;W k,p(V )) ∩ Lp(V ;W k,p(U)).

Conversely, let EU : S ′(U) → S ′(Rm) and EV : S ′(V ) → S ′(Rn) be the extension operators given
in Lemma 9. Define EU×V := EU ⊗ EV such that for f(u, v) = g(u)h(v) we have (EU×V f)(u, v) =
(EUg)(u)(EV h)(v). Clearly

EU×V = (EU ⊗ idR
n
) ◦ (idU ⊗ EV ) = (idR

m ⊗ EV ) ◦ (EU ⊗ idV ),

where (EU ⊗ idV )f(u, v) = EU (f(·, v))(u) for (u, v) ∈ Rm × V and similarly for the rest. Therefore
we have the following boundedness

EU×V : Lp(U ;W k,p(V ))
idU⊗EV

−−−−−→ Lp(U ;W k,p(Rn))
EU⊗idR

n

−−−−−−→ Lp(Rm;W k,p(Rn)).

Similarly EU×V : Lp(V ;W k,p(U)) → Lp(Rn;W k,p(Rm)) as well.
Therefore by (5), for every f ∈ W k,p(U × V ),

∥f∥Wk,p(U×V ) ≤∥EU×V f∥Wk,p(Rm×Rn) ≈ ∥EU×V f∥Lp(Rm;Wk,p(Rn)) + ∥EU×V f∥Lp(Rn;Wk,p(Rm))

≲∥f∥Lp(U ;Wk,p(V )) + ∥f∥Lp(V ;Wk,p(U)).

We conclude that (i) holds.

(ii): Clearly Lp(U ;W−k,p(V )) ⊂ W−k,p(U × V ) and Lp(V ;W−k,p(U)) ⊂ W−k,p(U × V ) by (4). This
gives the embedding Lp(U ;W−k,p(V )) + Lp(V ;W−k,p(U)) ⊆ W−k,p(U × V ).

Conversely, for every f ∈ W−k,p(U ×V ), by Lemma 9 it admits an extension f̃ ∈ W−k,p(Rm×Rn).

By (6) there exist f̃1 ∈ Lp(Rm
u ;W−k,p(Rn

v )) and f̃2 ∈ Lp(Rn
v ;W

−k,p(Rm
u )) such that f̃ = f̃1 + f̃2.

Taking restrictions we get the existence of the decomposition f = f1 + f2 where f1 := f̃1|U×V ∈
Lp(U ;W−k,p(V )) and f2 := f̃2 ∈ Lp(V ;W−k,p(U)).

Now for given f ∈ W−k,p(U×V ), let f1 ∈ Lp(U ;W−k,p(V )) and f2 ∈ Lp(V ;W−k,p(U)) be arbitrary
functions such that f1 + f2 = f , which exist from above. Thus

∥f∥W−k,p(U×V ) = ∥f1∥W−k,p(U×V ) + ∥f2∥W−k,p(U×V ) ≲ ∥f1∥Lp(U ;W−k,p(V )) + ∥f2∥Lp(V ;W−k,p(U)).

Therefore by taking infimum over the decomposition f1 + f2 = f we conclude that

∥f∥p
W−k,p(U×V )

≲ inf
f1+f2=f

∫
U
∥f1(u, ·)∥pW−k,p(V )

du+

∫
V
∥f2(·, v)∥pW−k,p(U)

dv.

That is, W−k,p(U × V ) ⊆ Lp(U ;W−k,p(V )) + Lp(V ;W−k,p(U)), completing the proof of (ii). □

Corollary 12. Let U ⊂ Rm, V ⊂ Rn be two bounded Lipschitz domains, and k ∈ Z, 1 < p < ∞. Let
T : Lp(U) → Lp(U) be a bounded linear operator that extends to a bounded linear map T : W k,p(U) →
W k,p(U). Defines T : Lp(U × V ) → Lp(U × V ) by acting T on the coordinate component of U , i.e.
T f(u, v) := T (f(·, v))(u). Then T : W k,p(U × V ) → W k,p(U × V ) is defined and bounded.

Here we are indeed using T = T ⊗ idV . See also Convention 17.

Proof. The definition T Dv = DvT and the property Lp(U ;Lp(V )) = Lp(V ;Lp(U)) ensure that T :
Lp(U ;W k,p(V )) → Lp(U ;W k,p(V )). The boundedness T : Lp(V ;W k,p(U)) → Lp(V ;W k,p(U)) is a
direct consequence of that of T : W k,p(U) → W k,p(U). The W k,p(U × V ) → W k,p(U × V ) bound of
T then follows from Proposition 10. □

3. Nijenhuis-Woolf Formulae and the proof of Theorem 3

In this section, we shall construct homotopy formulae on product domains making use of an idea in
[NW63]. This together with Proposition 10 allows us to prove Theorem 3.

First we introduce some notations and conventions for linear operators defined on forms (of mixed
degrees), which will be used to facilitate our proof.
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Convention 13 (Spaces on forms). Let X ∈ {S ′,D ′, C∞,W k,p, Hs,p : k ∈ Z, s ∈ R, 1 < p < ∞} and
let U ⊆ Cn. For 1 ≤ q ≤ n we use X (U ;∧0,q) the space of (0, q) forms f(ζ) =

∑
|I|=q fI(ζ)dζ̄

I where

fI ∈ X (U) for all I. If X ∈ {W k,p, Hs,p}, then we use the norm ∥f∥X (U ;∧0,q) =
∑

|I|=q ∥fI∥X (U).

Denote by X (U ;∧0,•) =
⊕n

q=0 X (U ;∧0,q) for forms of mixed degrees.

We adopt the following convention to extend an operator originally defined on forms of a single
degree to one on forms of mixed degrees.

Convention 14 (Operators on mixed degree forms). Let U ⊆ Cn, 0 ≤ q, r ≤ n and X ,Y ∈
{S ′,D ′, C∞,W k,p, Hs,p}. We identify a linear operator S : X (U ;∧0,q) → Y (U ;∧0,r) as S : X (U ;∧0,•) →
Y (U ;∧0,•) by setting S(fJdζ̄J) = 0 if |J | ≠ q.

For a family of operators (Tq)
n
q=0 where each Tq is defined on (0, q) forms, we use T =

∑n
q=0 Tq

to denote the corresponding operator on mixed degree forms. Namely, for a form f(z) =
∑n

q=0 fq(z)

where fq(z) is of degree (0, q), we define Tf =
∑n

q=0 Tqfq.

Remark 15. Under this convention, we can rewrite the homotopy formulae in Theorems 1 and 3 as a
single formula (here we use H0 = Hn+1 = 0)

f = Pf + ∂Hf +H∂f, for f ∈ S ′(Ω;∧0,•), where H =
∑

q≥1Hq.

Remark 16. For an operator S defined on functions, namely, with q = r = 0 in Convention 14,
one extends S on differential forms by taking zero value on (0, q) forms when q ≥ 1. In the paper
not all the operators on functions follow this convention. For example for an extension operator
E : X (U) → X (Cn) we define it on forms by acting on components, i.e. (Ef)(z) =

∑
I(EfI)(z)dz̄

I .

Next, we extend operators originally defined on slices to the entire product domain using the
following convention.

Convention 17 (Operator on product domains). Let U ⊆ Cm and V ⊆ Cn be two open sets,
endowed with standard coordinate system z = (z1, . . . , zm) and ζ = (ζ1, . . . , ζn) respectively. For a
linear operator TU : X (U ;∧0,•) → Y (U ;∧0,•), we denote T U for the associated operator TU ⊗ idV

on (0, •) forms defined on U × V by setting

(7) T U (ω ∧ dζ̄K)(z, ζ) := TU (ω(·, ζ))(z) ∧ dζ̄K , where ω(z, ζ) =
∑
I

ωI(z, ζ)dz̄
I .

In particular, if we write TU (
∑

J gJdz̄
J) =:

∑
I,J(T

U
IJgI)dz̄

J where TU
IJ : X (U) → Y (U) are linear

operators on functions, then for a form f(z, ζ) =
∑

J,K fJK(z, ζ)dz̄J ∧ dζ̄K ,

(T Uf)(z, ζ) =
∑
I,J,K

{
TU
IJ [fIK(·, ζ)]

}
(z)dz̄I ∧ dζ̄K , z ∈ U, ζ ∈ V.

Motivated by a one-dimensional analogue in [NW63, (2.2.2) - (2.2.5)], we deduce our homotopy
formulae making use of the following product-type configuration. See also Remark 20.

Theorem 18 (Product homotopy formulae). Let U ⊂ CnU and V ⊂ CnV be two open subsets. Suppose
for each W ∈ {U, V }, there exist continuous linear operators HW

q : C∞(W ;∧0,q) → D ′(W ;∧0,q−1) for

1 ≤ q ≤ nW , such that the following homotopy formulae hold (HW
nW+1 = 0 as usual) for 1 ≤ q ≤ nW :

(8) f = ∂HW
q f +HW

q+1∂f for all f ∈ C∞(W ;∧0,q).

Set PW f := f −HW
1 ∂f for functions f ∈ C∞(W ).

(i) Then we have homotopy formulae f = PU×V f+∂HU×V f+HU×V ∂f for f ∈ C∞(U × V ;∧0,•),
where (see Conventions 14 and 17)

PU×V := PU ◦ PV = PU ⊗ P V ; HU×V := HU + PU ◦ HV = HU ⊗ idV + PU ⊗HV .(9)
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(ii) Let k ∈ Z and 1 < p < ∞. Suppose further that U and V are bounded Lipschitz do-
mains, PU , HU : W l,p(U ;∧0,•) → W l,p(U ;∧0,•) and HV : W l,p(V ;∧0,•) → W l,p(V ;∧0,•) are
all defined and bounded for l ∈ {0, k}, then HU×V given in (9) are defined and bounded in
W k,p(U × V ;∧0,•) → W k,p(U × V ;∧0,•) as well.

If in addition P V : W l,p(V ) → W l,p(V ) is bounded for l ∈ {0, k}, then PU×V : W k,p(U ×
V ) → W k,p(U × V ) is bounded as well.

Remark 19. It is worth pointing out that the original formulae of Nijenhuis-Woolf in [NW63] are
restricted to products of planar domains. Under their settings the HΩj operators (denoted by T j in
the reference) are the solid Cauchy integral over Ωj . In their notation the operators are defined on
functions rather than (0, 1) forms. Moreover, even in the case when each Ωj is smooth, while HΩj

there satisfies the desired W k,p regularity for k ≥ 0 (see, for instance, [PZ25, Proposition 3.1] with
µ ≡ 1 there), their PΩj operators (denoted by Sj in the reference), which are given by the boundary
Cauchy integrals over bΩj , do not yield well-defined or bounded mappings on the Lp space as required
in Theorem 18 (ii). In Proposition 24 in the next section, we shall introduce a slightly different choice
of homotopy operators to overcome this issue.

Remark 20 (Formulae with separated degrees). Let z = (z1, . . . , znU ) and ζ = (ζ1, . . . , ζnV ) be stan-
dard coordinate systems for CnU and CnV , respectively. For 0 ≤ j ≤ nU and 0 ≤ k ≤ nV , let us define
the standard projection πj,k of forms by

πj,kf :=
∑

|J |=j,|K|=k

fJKdz̄J ∧ dζ̄K , for every f =
∑

J⊆{1,...,nU},K⊆{1,...,nV }

fJKdz̄J ∧ dζ̄K .

We have f =
∑nU

j=0

∑nV
k=0 πj,kf and

∑
j+k=q πj,kf is the degree (0, q) components of f .

Under this notation, and Conventions 14 and 17, we can write HU×V
q in (9) for 1 ≤ q ≤ nU +nV as

HU×V
q = HU ◦

( ∑
j+k=q

πj,k

)
+ PU ◦ HV ◦

( ∑
j+k=q

πj,k

)

=

q∑
j=1

HU
j ◦ πj,q−j + PU ◦ HV

q ◦ π0,q =
q∑

j=1

(HU
j ⊗ idV ) ◦ πj,q−j + (PU ⊗HV

q ) ◦ π0,q.

Note that the formula (9) is asymmetric. Namely, if we swap U and V , the homotopy operators in (9)
are not the same.

Remark 21. It is important that U and V in the assumption are at most Lipschitz. In the proof of
Theorem 1 and 3 we use induction with U = Ω1 × · · · × Ωm−1 and V = Ωm. However, even for two
smooth domains, the boundary regularity of their product is merely Lipschitz.

In contrast, Theorem 18 (ii) remains true for non-Lipschitz domains U and V if the analogy of
Proposition 10 holds for such U and V . A typical example is the Hartogs triangle, which is a non-
Lipschitz but uniform domain due to [BFLS22].

To prove Theorem 18, we let z = (z1, . . . , znU ) and ζ = (ζ1, . . . , ζnV ) be the standard coordinate
systems for CnU and CnV , respectively. We denote by ∂z =

∑nU
j=1 ∂z

j∧ ∂
∂z̄j

and ∂ζ =
∑nV

k=1 ∂ζ
k∧ ∂

∂ζ̄k
the

∂-operators of the z-component and the ζ-component, respective. Note that on the product domain
U × V we have ∂ = ∂z,ζ := ∂z + ∂ζ .

The key computation is the following (cf. [NW63, (2.1.1) - (2.1.3)]):

Lemma 22. Keeping the notations as above and as in Theorem 18, on U × V we have

(10) ∂z,ζPU = PU∂z,ζ , ∂z,ζPV = PV ∂z,ζ , ∂ζHU = −HU∂ζ , ∂zHV = −HV ∂z.

Moreover,

(11) ∂HU +HU∂ = id− PU , ∂HV +HV ∂ = id− PV ,

provided that the operators on both sides of the equalities are defined.
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Proof. Recall that PU = id0 −HU
1 ∂z is a projection for functions on U to holomorphic functions on

U . Therefore ∂zP
U = 0. Since PU vanishes on (0, q) forms when q ≥ 1, we get PU∂z = 0. Together

by Convention 17 we have ∂zPU = PU∂z = 0. Since PU only acts on z-variable, using (7) as well we
get ∂ζPU = PU∂ζ . Together we have ∂z,ζPU = PU∂z,ζ . The same argument yields ∂z,ζPV = PV ∂z,ζ .

Next, for a form f(z, ζ) = fJK(z, ζ)dz̄J ∧ dζ̄K , the HU (fJKdz̄J) is a (0, |J | − 1) form. By a direct
computation and (7),

∂ζHUf = ∂ζHU (fJKdz̄J ∧ dζ̄K) =

nV∑
k=1

dζ̄k ∧ ∂

∂ζ̄k
HU (fJKdz̄J) ∧ dζ̄K

=(−1)|J |−1
nV∑
k=1

∂

∂ζ̄k
HU (fJKdz̄J) ∧ dζ̄k ∧ dζ̄K = (−1)|J |−1

nV∑
k=1

HU
(∂fJK

∂ζ̄k
dz̄J ∧ dζ̄k ∧ dζ̄K

)
=(−1)|J |−1(−1)|J |

nV∑
k=1

HU
(
dζ̄k ∧ ∂fJK

∂ζ̄k
dz̄J ∧ dζ̄K

)
= −HU∂ζ(fJKdz̄J ∧ dζ̄K) = −HU∂ζf.

We get ∂ζHU = −HU∂ζ . By swapping (z, U) and (ζ, V ) we get ∂zHV = HV ∂z. This completes the
proof of (10).

Since by assumption idU − PU = ∂zH
U +HU∂z and idV − P V = ∂ζH

V +HV ∂ζ . Combing them
with (10) and Convention 17, we have (11). □

Proof of Theorem 18. First we note that PU×V ,HU×V from (9) are always defined on C∞(U × V ;∧0,•).
Indeed, for W ∈ {U, V }, a continuous linear operator TW : C∞(W ) → D ′(W ) can be lifted as a linear

operator T̃W : C∞
c (CnW ) → D ′(W ) via a continuous extension operator C∞(W ) → C∞

c (CnW ). By the

Schwartz Kernel Theorem (see e.g. [Trè06, Theorem 51.7]) T̃U ⊗ T̃ V : C∞
c (CnU ×CnV ) → D ′(U × V )

is continuous. Clearly ((T̃U ⊗ T̃ V )f̃)|U×V = (TU ⊗ T V )(f̃ |U×V ) for all f̃ ∈ C∞
c (CnU+nV ), we get the

continuity TU ⊗ T V : C∞(U × V ) → D ′(U × V ). Take TU ∈ {PU , HU} and T V ∈ {P V , HV } we get
the definedness.

Using (11) for every f ∈ C∞(U × V ;∧0,•),

PU×V f + ∂HU×V f +HU×V ∂f = PUPV f + ∂(HU + PUHV )f + (HU + PUHV )∂f

=PUPV f + (∂HU +HU∂)f + (∂PUHV + PUHV ∂)f = PUPV f + f − PUf + PU (∂HV +HV ∂)f

=PUPV f + f − PUf + PUf − PUPV f = f.

This gives the proof of (i).

For (ii), by Corollary 12 the boundedness assumption of PU , HU : W k,p
z (U ;∧0,•) → W k,p

z (U ;∧0,•)

and PU , HU : Lp
z(U ;∧0,•) → Lp

z(U ;∧0,•) implies the boundedness of PU ,HU : W k,p
z,ζ (U × V ;∧0,•) →

W k,p
z,ζ (U × V ;∧0,•). The same argument yields the boundedness HV : W k,p

z,ζ (U × V ;∧0,•) → W k,p
z,ζ (U ×

V ;∧0,•). By (9) with compositions, we conclude that HU×V : W k,p
z,ζ (U × V ;∧0,•) → W k,p

z,ζ (U × V ;∧0,•)

is bounded.
If we further assume P V is bounded in both Lp

ζ(V ) → Lp
ζ(V ) and W k,p

ζ (V ) → W k,p
ζ (V ), then by

Corollary 12 PV : W k,p
z,ζ (U × V ) → W k,p

z,ζ (U × V ) is bounded as well. Taking compositions with PU ,

we obtain the boundedness PU×V : W k,p
z,ζ (U × V ) → W k,p

z,ζ (U × V ), completing the proof. □

Proof of Theorem 3. Identifying P as the operator on forms of all degrees following Convention 14
and Remark 15, we can write the homotopy formulae as f = Pf + ∂Hf +H∂f for mixed degree form
f .

The proof can be done by induction on m. The based case m = 1 follows from the assumption
(1). Suppose the case m− 1 is obtained. For the case m, take U := Ω1 × · · · × Ωm−1 ⊂ Cn1+···+nm−1

and V := Ωm ⊂ Cnm . Since the product of bounded Lipschitz domains is still bounded Lipschitz, we
see that U and V are both bounded Lipschitz domains as well. By the induction hypothesis there
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are linear operators HU =
∑n1+···+nm−1

q=1 HU
q on C∞(U ;∧0,•) and HV =

∑nm
q=1H

V
q on C∞(V ;∧0,•)

(in terms of Conventions 14 and 17), such that g = PUg + ∂HUg + HU∂g for all g ∈ C∞(U ;∧0,•),
h = P V h + ∂HV h +HV ∂h for all h ∈ C∞(V ;∧0,•), where PU = idU0 −HU

1 ∂ and P V = idV0 −HV
1 ∂

are skew Bergman projections on functions (in U and V respectively).
Applying Theorem 18 to such PU , HU , P V , HU we obtain the desired operators PΩ and HΩ =

(HΩ
q )

n1+···+nm
q=1 on Ω = U × V . By Theorem 18 (i) f = PΩf + ∂HΩf +HΩ∂f for all f ∈ C∞(Ω;∧0,•),

which gives (2).

Suppose further (3) holds, that is, for some k ∈ Z and 1 < p < ∞, PU , P V , HU , HV are all bounded
in W k,p → W k,p and Lp → Lp. By Theorem 18 (ii) the W k,p and Lp boundeness for PU , HU , P V , HU

implies the W k,p boundedness for PΩ and HΩ. (ii) is thus proved. □

Remark 23. By expanding the induction, the formulae we have for Ω = Ω1 × · · · × Ωr are

PΩ =PΩ1 . . .PΩm = PΩ1 ⊗ · · · ⊗ PΩm ;

HΩ =HΩ1 + PΩ1HΩ2 + · · ·+ PΩ1 . . .PΩm−1HΩm

= HΩ1 ⊗ idΩ2×···×Ωm + PΩ1 ⊗HΩ2 ⊗ idΩ3×···×Ωm + · · ·+ PΩ1 ⊗ · · · ⊗ PΩm−1 ⊗HΩm .

For a given degree (0, q), the precise expression of HΩ
q follows from the same deduction to Remark 20.

4. Proof of Theorem 1

In this section, we check that for each factor Ωj under consideration in Theorem 1, there exist linear

operators (H
Ωj
q )

nj

q=1 and P which satisfy the homotopy formulae and has the desired boundedness in
all Sobolev spaces.

Proposition 24. Let Ω ⊂ C be a bounded Lipschitz domain. Then there is an operator H1 :
S ′(Ω;∧0,1) → S ′(Ω) such that ∂H1 = id and H1 : W k,p(Ω;∧0,1) → W k+1,p(Ω) is bounded for all
k ∈ Z and 1 < p < ∞. In particular P := id −H1∂ satisfies P : W k,p(Ω) → W k,p(Ω) for all k ∈ Z
and 1 < p < ∞, and we have the homotopy formula f = Pf + ∂Hf +H∂f for f ∈ S ′(Ω,∧0,•).

Note that since there are no (0, 2) forms in C1, we have H = H1. In particular, f = Pf +H1∂f for
functions f ∈ S ′(Ω) and f = ∂H1f for (0, 1) forms f ∈ S ′(Ω;∧0,1).

Proof. Take a bounded open set U ⋑ Ω. By Lemma 9 there exists an extension operator E : S ′(Ω) →
E ′(U) such that E : W k,p(Ω) → W k,p

c (U) is bounded for all k ∈ Z and 1 < p < ∞. Take

H1(gdz̄) := ( 1
πz ∗ Eg)|Ω.

Since 1
πz is the fundamental solution to ∂

∂z̄ , we get ∂H1(gdz̄) = gdz̄ for all g ∈ S ′(Ω). The boundedness

H1 : W
k,p(Ω;∧0,1) → W k+1,p(Ω) is standard, from which one simultaneously obtains the boundedness

P : W k,p(Ω) → W k,p(Ω). We give a version of the proof here.

Since E : W k,p(Ω) → W k,p
c (U) is bounded, it suffices to show the boundedness [g 7→ 1

πz ∗ g] :

W k,p
c (U) → W k+1,p(Ω). Since U is bounded, say U ⊂ B(0, R), we can take a χ ∈ C∞

c (C) such that
χ|B(0,2R) ≡ 1, which allows ( 1

πz ∗ g)|Ω = ((χ · 1
πz ) ∗ g)|Ω. Thus the proposition is further reduced to

showing [g 7→ (χ · 1
πz ) ∗ g] : W

k,p(C) → W k+1,p(C) is bounded.
Recalling that for the Fourier transform f̂(ξ, η) =

∫
C f(x+ iy)e−2πi(xξ+yη)dxdy, we see that

m(ξ, η) :=
(
(I −∆)

1
2 (χ · 1

πz )
)∧

(ξ, η) = 1
πi

√
1 + 4π2(|ξ|2 + |η|2) ·

(
χ̌ ∗ 1

ξ+iη

)
.

This is a bounded smooth function in R2
ξ,η such that supξ,η

√
ξ2 + η2|∇m(ξ, η)| < ∞, which is in

particular a Hörmander-Mikhlin multiplier. By the Hörmander-Mikhlin multiplier theorem (see e.g.

[Gra14, Section 6.2.3]) [g 7→ (I −∆)
1
2 (χ · 1

πz ) ∗ g] : L
p(C) → Lp(C) is bounded for all 1 < p < ∞.
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Using the Sobolev-Bessel spaces in Definition 7 and the fact that (I −∆)
s
2 (m̌ ∗ g) = m̌ ∗ (I −∆)

s
2 g,

we conclude that [g 7→ (χ · 1
πz ) ∗ g] : H

s,p(C) → Hs+1,p(C) is bounded for all s ∈ R and 1 < p < ∞.

The W k,p boundedness follows from Remark 8 (i). □

Proposition 25. Let Ω ⊂ Cn be a bounded domain which is either C2 strongly pseudoconvex or C1,1

strongly C-linearly convex. There are linear operators P : S ′(Ω) → S ′(Ω) and Hq : S ′(Ω;∧0,q) →
S ′(Ω;∧0,q−1) for 1 ≤ q ≤ n, such that f = Pf + ∂Hf + H∂f for all f ∈ S ′(Ω,∧0,•), and P,H :
W k,p(Ω;∧0,•) → W k,p(Ω;∧0,•) are bounded for all k ∈ Z and 1 < p < ∞.

See [Yao24b, Theorem 1.1]. In fact we have the boundednessHq : H
s,p(Ω;∧0,q) → Hs+1/2,p(Ω;∧0,q−1)

for 1 ≤ q ≤ n− 1 and Hn : Hs,p(Ω;∧0,n) → Hs+1,p(Ω;∧0,n−1) for all s ∈ R and 1 < p < ∞.

Proposition 26. Let Ω ⊂ Cn be a smooth convex domain of finite type. There are linear operators P :
S ′(Ω) → S ′(Ω) and Hq : S ′(Ω;∧0,q) → S ′(Ω;∧0,q−1) for 1 ≤ q ≤ n, such that f = Pf+∂Hf+H∂f

for all f ∈ S ′(Ω,∧0,•), and P,H : W k,p(Ω;∧0,•) → W k,p(Ω;∧0,•) are bounded for all k ∈ Z and
1 < p < ∞.

The boundedness of Hq was obtained in [Yao24b]. For the boundedness of P = id0 − H1∂, we
postpone the proof to Theorem 29 in Section A. A slightly more general version of this statement
using Triebel-Lizorkin spaces can be found in the arxiv version [Yao24a, Appendix B] with a similar
argument as in the Appendix.

Theorem 1 now follows directly from Theorem 3 with Propositions 24 - 26. We include the proof
for completeness.

Proof of Theorem 1 and Corollary 2. Since on each Ωj we have (1) and (3) for all k ∈ Z and 1 < p < ∞
by Propositions 24 - 26, we obtain the linear operators P and H as defined in Theorem 3, which
satisfy (2), and are bounded on W k,p for all k ∈ Z and 1 < p < ∞. Because C∞(Ω) is dense in
W k,p(Ω) (see e.g. [Yao24b, Lemma A.14] for k ≤ 0), the homotopy formulae uniquely extends to all
f ∈ W k,p(Ω;∧0,•) for k ≤ 0 and 1 < p < ∞. By Remark 6 (ii) again the homotopy formula (2) holds
for all f ∈ S ′(Ω;∧0,•). This proves Theorem 1. Corollary 2 is a direct consequence of Theorem 1. □

Remark 27. If one only focuses on optimal W k,p estimates for k ≥ 0, we can also allow Ωj in Theorem 1
to be a smooth pseudoconvex domain of finite type in C2, or other pseudoconvex domains where the
canonical solution operators Hq := ∂

∗
Nq and the Bergman projection P := id0 − ∂

∗
N1∂ are bounded

in W k,p. See e.g. [CNS92, Corollaries 7.5 and 7.6].
However if one further looks for W k,p estimates for small enough k < 0, the canonical solutions will

not work. This is due to the ill-posedness of the ∂-Neumann problem on space of distributions. See
[Yao24b, Lemma A.32].

Remark 28 (Near optimal Hölder estimates). If we use (9) for the Hölder spaces, then we have end
point optimal Hölder estimates HΩ : Ck,α(Ω;∧0,•) → Ck,α−(Ω;∧0,•) for all k ≥ 0 and 0 < α < 1. This
can be done by Sobolev embeddings as follows.

Indeed, for every ε > 0 by taking n/ε < p < ∞, we have continuous embeddings Ck,α(Ω) ↪→
Hk+α,p(Ω) ↪→ Ck,α−ε(Ω), see e.g. [Tri06, Remark 1.96 and Theorem 1.122]. From Remark 8 (ii)
we obtain the boundedness PΩ,HΩ : Hk+α,p(Ω;∧0,•) → Hk+α,p(Ω;∧0,•). Thus Ck,α(Ω;∧0,•) →
Ck,α−ε(Ω;∧0,•) is bounded. Letting ε → 0+ we get the end point optimal Hölder bounds.

Appendix A. Skew Bergman Projection on Convex Domains of Finite type

In this section we briefly review the construction of homotopy formulae on convex domains of finite
type from [Yao24a] and complete the proof to Proposition 26.

Theorem 29. Let Ω ⊂ Cn be a smooth convex domain of finite type. For the homotopy operators
Hq : S ′(Ω;∧0,q) → S ′(Ω;∧0,q−1) for q = 1, . . . , n given in [Yao24a, Theorem 1.1], let Pf := f−H1∂f
for f ∈ S ′(Ω). Then P : Hs,p(Ω) → Hs,p(Ω) is bounded for all s ∈ R and 1 < p < ∞. In particular
P : W k,p(Ω) → W k,p(Ω) is bounded for k ∈ Z and 1 < p < ∞.
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Here for a convex domain we can use affine line type [Yao24a, Definition 3.1] to define the type
condition. See e.g. [McN92, BS92] for more discussions.

We briefly review the construction. Let ϱ : Cn → R be a defining function of Ω, which is a smooth
function such that ∇ϱ(z) ̸= 0 for all ζ ∈ bΩ and Ω = {ζ ∈ Cn : ϱ(ζ) ̸= 0}. We can assume that there
is a T1 > 0 such that for all |t| < T1 the sublevel set Ωt := {ϱ < t} are all scaled copies of Ω, which in
particular have the same finite type as Ω.

Denote U1 = {ζ : −T1 < ϱ(ζ) < T1}. For each ζ ∈ U1, we have orthogonal decomposition of the

(0, 1) cotangent space Cn = T ∗0,1
ζ Cn = (SpanC ∂ϱ(ζ)) ⊕ T ∗0,1

ζ (bΩϱ(ζ)). This leads to an orthogonal

decomposition f = f⊤ + f⊥ for (0, q) forms f(ζ) =
∑

I fI(z)∂ζ
I defined in U1:

• f⊥ is in the ideal generated by ∂ϱ, i.e. ιZf
⊥ = 0 for every (0, 1)-vector fields Z =

∑n
j=1 Zj

∂
∂ζ̄j

such that Zϱ = 0.
• f⊤ is a section of

∐
ζ ∧qT ∗0,1

ζ (bΩϱ(ζ)), i.e. ι ∂
∂ϱ̄
f⊤ = 0, where ∂

∂ϱ̄ = |∂ϱ|−2
∑n

j=1
∂ϱ
∂ζj

∂
∂ζ̄j

.

See [Yao24a, Definition 2.6 and Remark 2.8] for details. For a bidegree form K(z, ζ) in variables z and
ζ, we use K⊤(z, ζ) and K⊥(z, ζ) for the projections with respect to ζ-variable but not to z-variable.

For ζ ∈ U1 we also define the so-called ε-minimal ellipsoid (associated to ϱ):

(12) Pε(ζ) =
{
ζ +

n∑
j=1

ajvj : a1, . . . , an ∈ C,
n∑

j=1

|aj |2

τj(ζ, ε)2
< 1

}
,

where (v1, . . . , vn) is a unitary basis called ε-minimal basis at ζ and τ1(ζ, ε) ≤ · · · ≤ τn(ζ, ε) are
the side lengths. See [Yao24a, Definition 3.2] and [Hef02, Definition 2.6]. Roughly speaking τj(ζ, ε)
is the minimum number such that there is a unit vector vj satisfying vj⊥SpanC(v1, . . . , vj−1) and
ϱ(ζ + τj(ζ, ε) · vj) = ϱ(ζ) + ε. This was first constructed by Yu in [Yu92] that based on the work
[Sch91].

Recall from [Yao24a, Lemma 3.3 and Remark 3.4] that the following estimates hold: there is a
C0 > 1 and ε0 > 0 such that

(13) For every 0 < ε < ε0 and Pε(ζ) ⊂ U1, if z ∈ Pε(ζ) then ζ ∈ PC0ε(z);

(14) C−1
0 ε ≤ τ1(ζ, ε) ≤ C0ε and τn(ζ, ε) ≤ C0ε

1/m, where m is the type of Ω.

See also [Hef02, Section 2] for more details. We shall need the following estimates:

Proposition 30 ([Yao24a, Lemma 3.9]). Let Ω, ϱ, Pε(ζ), τj(ζ, ε) and ε0 be defined as above. There

is a neighborhood U of Ω and a smooth (1, 0) form Q̂(z, ζ) =
∑n

j=1Qj(z, ζ)dζj defined for z ∈ Ω and

ζ ∈ U\Ω, such that:

(i) Q̂ is a Leray form, i.e. Q̂ is holomorphic in z, and |Q̂(z, ζ)| ≠ 0 for all z ∈ Ω and ζ ∈ U\Ω.
(ii) Denote Ŝ(z, ζ) :=

∑n
l=1 Q̂l(z, ζ)(ζl − zl). For every k ≥ 0 there is a Ck > 0 such that for every

0 ≤ j ≤ n− 1, 0 < ε ≤ ε0, ζ ∈ U\Ω and z ∈ Ω ∩ Pε(ζ)\Pε/2(ζ),

(15)

∣∣∣∣Dk
z,ζ

(Q̂ ∧ (∂Q̂)j

Ŝj+1

)⊤
(z, ζ)

∣∣∣∣ ≤ Ckε
−1−k∏j+1

l=2 τl(ζ, ε)
2
;

∣∣∣∣Dk
z,ζ

(Q̂ ∧ (∂Q̂)j

Ŝj+1

)⊥
(z, ζ)

∣∣∣∣ ≤ Ckε
−2−kτj+1(ζ, ε)∏j+1
l=2 τl(ζ, ε)

2
.

Here Dk = {∂α
z ∂

β
ζ ∂

γ

ζ
}|α+β+γ|≤k is the collection of differential operators acting on the components of

the forms.

Here in the reference [Yao24a, Lemma 3.9] the second term in (15) is stated for
( Q̂∧(∂Q̂)j

Ŝj+1

)
(z, ζ).

Nevertheless using
( Q̂∧(∂Q̂)j

Ŝj+1

)⊥
=

( Q̂∧(∂Q̂)j

Ŝj+1

)
−

( Q̂∧(∂Q̂)j

Ŝj+1

)⊤
and (14) we get the same estimate (with

some larger Ck) for
( Q̂∧(∂Q̂)j

Ŝj+1

)⊥
(z, ζ).

This Leray map was constructed by Diederich and Fornæss [DF99]. Note that in the original
construction [DF99] the support function S(z, ζ) may have zeros when |z − ζ| is large. In [Yao24a,
Lemma 2.2] we took a standard modification to avoid the issue.
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Now we can recall the homotopy operators (Hq)
n
q=1 in [Yao24a], which takes the following form:

(16) Hqf(z) =

∫
U
Bq−1(z, ·) ∧ Ef +

∫
U\Ω

Kq−1(z, ·) ∧ [∂, E ]f, f ∈ S ′(Ω;∧0,q), 1 ≤ q ≤ n.

Here U is the bounded neighborhood of Ω determined in Proposition 30. E : S ′(Ω) → E ′(U) is
Rychkov’s extension operator [Ryc99], acting on the components of the forms, see [Yao24b, (4.6) and
(4.14)] for the precise formula.

B(z, ζ) :=
b ∧ (∂b)n−1

(2πi)n|ζ − z|2n
=

n−1∑
q=0

Bq, K(z, ζ) =
b ∧ Q̂

(2πi)n
∧

n−1∑
k=1

(∂b)n−1−k ∧ (∂Q̂)k−1

|z − ζ|2(n−k)(Q̂ · (ζ − z))k
=

n−2∑
q=0

Kq,

where b =
∑n

j=1(ζ̄j− z̄j)dζ
j . B is the Bochner-Martinelli form, with Bq the component of degree (0, q)

in z and (n, n− q − 1) in ζ. K is the Leray-Koppelman form associated to Q̂(z, ζ) in Proposition 30,
where Kq is the component of degree (0, q) in z and (n, n− q − 2) in ζ.

Denote by

(17) F (z, ζ) := B(z, ζ)− ∂z,ζK(z, ζ), z ∈ Ω, ζ ∈ U\Ω,

the Cauchy-Fantappiè form. Recall from [CS01, Lemma 11.1.1] we have

F (z, ζ) =
Q̂ ∧ (∂Q̂)n−1

(2πi)nŜ(z, ζ)n
=

Q̂(z, ζ) ∧ (∂Q̂(z, ζ))n−1

(2πi)n(Q̂(z, ζ) · (ζ − z))n
, z ∈ Ω, ζ ∈ U\Ω.

Note that F is a bi-degree (n, n − 1) form, with degree (0, 0) in z and (n, n − 1) in ζ. We write the
decomposition F = F⊤ + F⊥ in ζ-variable as defined from above (see [Yao24a, Convention 2.7]).

Proposition 31. Assume Ω is convex and has finite type m. Let δ(w) := dist(w, bΩ). Then for any

s ∈ R and k ∈ Z+ such that 0 < s < k − 1, there is a constant C = C(Ω,U , Q̂, k, s) > 0 such that∫
U\Ω

δ(ζ)s|Dk
z,ζ(F

⊤)(z, ζ)|dVol(ζ) ≤ Cδ(z)s+1−k, ∀z ∈ Ω;(18) ∫
Ω
δ(z)s|Dk

z,ζ(F
⊤)(z, ζ)|dVol(z) ≤ Cδ(ζ)s+1−k, ∀ζ ∈ U\Ω;(19) ∫

U\Ω
δ(ζ)s|Dk

z,ζ(F
⊥)(z, ζ)|dVol(ζ) ≤ Cδ(z)s+

1
m
−k, ∀z ∈ Ω;(20) ∫

Ω
δ(z)s|Dk

z,ζ(F
⊥)(z, ζ)|dVol(z) ≤ Cδ(ζ)s+

1
m
−k, ∀ζ ∈ U\Ω.(21)

As a result if we define for every α ∈ N2n
ζ,ζ̄

Fα,⊤g(z) :=

∫
U\Ω

Dα
ζ (F

⊤)(z, ·) ∧ g, Fα,⊥g(z) :=

∫
U\Ω

Dα
ζ (F

⊥)(z, ·) ∧ g, g ∈ L1(U\Ω;∧0,1),

then in terms of Definition 7, for every s > 0 and 1 < p < ∞,

(22) Fα,⊤ : H̃s,p(U\Ω;∧0,1) → Hs+1−|α|,p(Ω), Fα,⊥ : H̃s,p(U\Ω;∧0,1) → Hs+ 1
m
−|α|,p(Ω)

are bounded.

Proof. Notice that for 0 < ε < ε0 and ζ ∈ U\Ω by (12) we have |Pε(ζ)\Pε/2(ζ)| ≤ |Pε(ζ)| ≤∏n
l=1 τl(ζ, ε)

2. Similarly |Pε(z)\Pε/2(z)| ≤
∏n

l=1 τl(z, ε)
2 for −ε0 < ϱ(z) < 0 as well.

According to Proposition 30, (15) holds for 0 < ε < ε0, ζ ∈ U\Ω and z ∈ Ω ∩ Pε(ζ)\P ε
2
(ζ). By

(13), for a possibly larger Ck > 0, one also has (15) holds for 0 < ε < ε0, −ε0 < ϱ(z) < 0 and
ζ ∈ Pε(z)\(P ε

2
(z) ∩ Ω).
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Now take j = n− 1 in (15), for every z ∈ Ω and ζ ∈ U\Ω, we see that∫
Ω∩Pε(ζ)\P ε

2
(ζ)

|Dk(F⊤)(w, ζ)|dVol(w) +
∫
Pε(z)\(P ε

2
(z)∪Ω)

|Dk(F⊤)(z, w)|dVol(w) ≤ Ckε
1−k;(23) ∫

Ω∩Pε(ζ)\P ε
2
(ζ)

|Dk(F⊥)(w, ζ)|dVol(w) +
∫
Pε(z)\(P ε

2
(z)∪Ω)

|Dk(F⊥)(z, w)|dVol(w) ≤ Ckε
1
m
−k.(24)

To prove (18), we note that 0 < s < k−1, and F is bounded and smooth uniformly either for z ∈ Ω
with δ(z) ≥ ε0, or for ζ ∈ U\(Pε0(z)∪Ω). Thus it suffices to show

∫
Pε0 (z)\Ω

δ(ζ)s|DkF⊤(z, ζ)|dVolζ ≲
δ(z)s+1−k, ∀δ(z) < ε0. Let J ∈ Z be the unique number such that 2−Jε0 ≤ ϱ(z) < 21−Jε0. Then
Pε0(z)\Ω ⊂ ∪J

j=1P21−jε0(z)\(P2−jε0(z) ∪ Ω). Applying (23) we get (18):

(25)

∫
Pε0 (z)\Ω

δ(ζ)s|DkF⊤(z, ζ)|dVolζ ≲k

J∑
j=1

∫
P
21−jε0

(z)\(P
2−jε0

(z)∪Ω)
(2−jε0)

s|DkF⊤(z, ζ)|dVolζ

≲k

J∑
j=1

(2−jε0)
s(2−jε0)

1−k ≲ε0 2−J(s+1−k) ≈ δ(z)s+1−k.

By swapping z and ζ, the same argument yields (19). Replacing (23) by (24), the same computation
as in (25) yields (20) and (21).

The boundedness for Fα,⊤ is a direct consequence from [Yao24b, Corollary A.28] with (18) and
(19), similarly that of Fα,⊥ follows from (20) and (21). The proof uses Hardy’s distance inequality
(see [Yao24a, Proposition 5.3]). □

Proposition 32. Let Ω ⊂ Cn be a bounded smooth domain and U ⊃ Ω be a bounded smooth neigh-
borhood. Let E be Rychkov’s extension operator in [Yao24a, (4.14)].

(i) For every k ≥ 1 there are linear operators (Sk,α)|α|≤k : S ′(Cn) → S ′(Cn) (here α ∈ N2n) such

that Sk,α : H̃s,p(U\Ω) → H̃s+k,p(U\Ω) is bounded and g =
∑

|α|≤k D
αSk,αg for all supp g ⊂

U\Ω.
(ii) The map [f 7→ ([∂, E ]f)⊤] : Hs,p(Ω) → H̃s−ε,p(U\Ω) is bounded for all s ∈ R, ε > 0 and

1 < p < ∞.

See [SY24a, Proposition 1.7] for (i) and [Yao24a, Corollary 5.5 (iii)] for (ii).

Proof of Theorem 29. Since B − F = ∂z,ζK by (17), by separating the degrees we see that F =

B0− ∂ζK0. For the same extension operator E in (16) we have (see e.g. [Gon19, Proposition 2.1]), for
f ∈ S ′(Ω),

Pf(z) =f(z)−H1∂f(z) = Ef(z)−
∫
U
B0(z, ·) ∧ E∂f −

∫
U\Ω

K0(z, ·) ∧ [∂, E ]∂f

=

∫
U
∂ζB0(z, ·) ∧ Ef −

∫
U
B0(z, ·) ∧ ∂Ef +

∫
U\Ω

B0(z, ·) ∧ [∂, E ]f +

∫
U\Ω

K0(z, ·) ∧ ∂[∂, E ]f

=

∫
U\Ω

B0(z, ·) ∧ [∂, E ]f −
∫
U\Ω

∂ζK0(z, ·) ∧ [∂, E ]f =

∫
U\Ω

F (z, ·) ∧ [∂, E ]f.

Fix s ∈ R and 1 < p < ∞. It suffices to show P : Hs,p(Ω) → Hs,p(Ω) is bounded.



14 SOBOLEV ESTIMATES ON PRODUCT DOMAINS

Take k ∈ Z+ such that k > 1 − s. By the ⊤,⊥ decomposition, Proposition 32 (i) and integration
by parts we have

Pf(z) =

∫
U\Ω

F⊤(z, ·) ∧ ([∂, E ]f)⊥ + F⊥(z, ·) ∧ ([∂, E ]f)⊤

=
∑
|α|≤k

∫
U\Ω

F⊤(z, ·) ∧DαSk,α
[
([∂, E ]f)⊥

]
+ F⊥(z, ·) ∧DαSk,α

[
([∂, E ]f)⊤

]
=

∑
|α|≤k

(−1)|α|
∫
U\Ω

Dα
ζ (F

⊤)(z, ·) ∧ Sk,α
[
([∂, E ]f)⊥

]
+Dα

ζ (F
⊥)(z, ·) ∧ Sk,α

[
([∂, E ]f)⊤

]
=

∑
|α|≤k

(−1)|α|
(
Fα,⊤Sk,α[∂, E ]⊥ + Fα,⊤Sk,α[∂, E ]⊤

)
[f ].

Here we use [∂, E ](⊤,⊥)f := ([∂, E ]f)(⊤,⊥).

Note that by Proposition 32 (ii) [∂, E ]⊤ : Hs,p(Ω) → H̃s−1/m,p(Ω) is bounded. On the other hand,

since [∂, E ] : Hs,p(Ω) → H̃s−1,p(U\Ω) is clearly bounded and [∂, E ]⊥ = [∂, E ] − [∂, E ]⊤, we have the

boundedness [∂, E ]⊥ : Hs,p(Ω) → H̃s−1,p(U\Ω). Making use of those, together with the boundedness
for Sk,α in Proposition 32 (i), as well as for Fα,⊤ and Fα,⊥ in (22), we apply the following composition
arguments: for every |α| ≤ k

Fα,⊤Sk,α[∂, E ]⊥ :Hs,p(Ω)
[∂,E]⊥−−−−→ H̃s−1,p(U\Ω) Sk,α

−−−→ H̃s−1+k,p(U\Ω) Fα,⊤
−−−→ Hs,p(Ω);

Fα,⊥Sk,α[∂, E ]⊤ :Hs,p(Ω)
[∂,E]⊤−−−−→ H̃s−1/m,p(U\Ω) Sk,α

−−−→ H̃s−1/m+k,p(U\Ω) Fα,⊥
−−−→ Hs,p(Ω).

Taking sums over α we complete the proof. □

Acknowledgment. The authors would like to thank Song-Ying Li for some helpful discussion.
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[Ran90] R. Michael Range, Integral kernels and Hölder estimates for ∂ on pseudoconvex domains of finite type in
C2, Math. Ann. 288 (1990), no. 1, 63–74. MR 1070924

[Ryc99] Vyacheslav S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect
to Lipschitz domains, J. London Math. Soc. (2) 60 (1999), no. 1, 237–257. MR 1721827

[Sch91] Helmut Schulz, Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms, Indiana
Univ. Math. J. 40 (1991), no. 4, 1267–1275. MR 1142714

[SY24a] Ziming Shi and Liding Yao, New estimates of Rychkov’s universal extension operator for Lipschitz domains
and some applications, Math. Nachr. 297 (2024), no. 4, 1407–1443. MR 4734977

[SY24b] , A solution operator for the ∂ equation in Sobolev spaces of negative index, Trans. Amer. Math.
Soc. 377 (2024), no. 2, 1111–1139. MR 4688544
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